Saturday, January 4, 2014

Atul Gawande, the Pilot's Check List, and Construction QA/QC

Six years ago, Atul Gawande wrote an interesting article about the effectiveness of using checklists in the critical care of patients.  The point was: they work, they're simple, but people don't use them. 

They  should work in construction as well. 

I recently was involved in a construction defects case.  The defects involved more than a mile of rusting base flashing around the perimeter of buildings, and defective construction of stair landings. The owner had hired prominent architects, a top flight contractor, paid the contractor to have a full time quality control person attend to construction, and hired a reputable and experienced water-proofing consultant.  How could it have happened? 

Looking through the documentation and history of the project it became apparent that the construction team was not following a disciplined check list procedure. Although there were mock-ups, the mock-up did not systematically verify a) is the design correct, b) is the design being followed, c) are the correct materials being used, d) are they correctly installed, e) will the work stand the test of time?  Although all the right parties were present and observed, none was ultimately responsible to a check-list and each other.  They stood around, but their critical faculty was not engaged.

          The Problem in the Critical Care Unit

[There]  is the puzzle of I.C.U. care: you have a desperately sick patient, and in order to have a chance of saving him you have to make sure that a hundred and seventy-eight daily tasks are done right—despite some monitor’s alarm going off for God knows what reason, despite the patient in the next bed crashing, despite a nurse poking his head around the curtain to ask whether someone could help “get this lady’s chest open.” So how do you actually manage all this complexity? The solution that the medical profession has favored is specialization. …. 
Like medicine, of course, construction is complex and many steps by different people are involved. 


          The B-17 Bomber and the 'Pilot's Checklist'

On October 30, 1935, at Wright Air Field in Dayton, Ohio, the U.S. Army Air Corps held a flight competition for airplane manufacturers vying to build its next-generation long-range bomber. It wasn’t supposed to be much of a competition. In early evaluations, the Boeing Corporation’s gleaming aluminum-alloy Model 299 had trounced the designs of Martin and Douglas. Boeing’s plane could carry five times as many bombs as the Army had requested; it could fly faster than previous bombers, and almost twice as far. A Seattle newspaperman who had glimpsed the plane called it the “flying fortress,” and the name stuck. The flight “competition,” according to the military historian Phillip Meilinger, was regarded as a mere formality. The Army planned to order at least sixty-five of the aircraft.
A small crowd of Army brass and manufacturing executives watched as the Model 299 test plane taxied onto the runway. It was sleek and impressive, with a hundred-and-three-foot wingspan and four engines jutting out from the wings, rather than the usual two. The plane roared down the tarmac, lifted off smoothly, and climbed sharply to three hundred feet. Then it stalled, turned on one wing, and crashed in a fiery explosion. Two of the five crew members died, including the pilot, Major Ployer P. Hill.
 An investigation revealed that nothing mechanical had gone wrong. The crash had been due to “pilot error,” the report said. Substantially more complex than previous aircraft, the new plane required the pilot to attend to the four engines, a retractable landing gear, new wing flaps, electric trim tabs that needed adjustment to maintain control at different airspeeds, and constant-speed propellers whose pitch had to be regulated with hydraulic controls, among other features. While doing all this, Hill had forgotten to release a new locking mechanism on the elevator and rudder controls. The Boeing model was deemed, as a newspaper put it, “too much airplane for one man to fly.” The Army Air Corps declared Douglas’s smaller design the winner. Boeing nearly went bankrupt.
 Still, the Army purchased a few aircraft from Boeing as test planes, and some insiders remained convinced that the aircraft was flyable. So a group of test pilots got together and considered what to do.
 They could have required Model 299 pilots to undergo more training. But it was hard to imagine having more experience and expertise than Major Hill, who had been the U.S. Army Air Corps’ chief of flight testing. Instead, they came up with an ingeniously simple approach: they created a pilot’s checklist, with step-by-step checks for takeoff, flight, landing, and taxiing. Its mere existence indicated how far aeronautics had advanced. In the early years of flight, getting an aircraft into the air might have been nerve-racking, but it was hardly complex. Using a checklist for takeoff would no more have occurred to a pilot than to a driver backing a car out of the garage. But this new plane was too complicated to be left to the memory of any pilot, however expert.
 With the checklist in hand, the pilots went on to fly the Model 299 a total of 1.8 million miles without one accident. The Army ultimately ordered almost thirteen thousand of the aircraft, which it dubbed the B-17. And, because flying the behemoth was now possible, the Army gained a decisive air advantage in the Second World War which enabled its devastating bombing campaign across Nazi Germany.

         Adapting the Pilot's Check List to Medicine 

Medicine today has entered its B-17 phase. Substantial parts of what hospitals do—most notably, intensive care—are now too complex for clinicians to carry them out reliably from memory alone. I.C.U. life support has become too much medicine for one person to fly. 
Yet it’s far from obvious that something as simple as a checklist could be of much help in medical care. Sick people are phenomenally more various than airplanes. A study of forty-one thousand trauma patients—just trauma patients—found that they had 1,224 different injury-related diagnoses in 32,261 unique combinations for teams to attend to. That’s like having 32,261 kinds of airplane to land. Mapping out the proper steps for each is not possible, and physicians have been skeptical that a piece of paper with a bunch of little boxes would improve matters much.
 In 2001, though, a critical-care specialist at Johns Hopkins Hospital named Peter Pronovost decided to give it a try. He didn’t attempt to make the checklist cover everything; he designed it to tackle just one problem, the one that nearly killed Anthony DeFilippo: line infections. On a sheet of plain paper, he plotted out the steps to take in order to avoid infections when putting a line in. Doctors are supposed to (1) wash their hands with soap, (2) clean the patient’s skin with chlorhexidine antiseptic, (3) put sterile drapes over the entire patient, (4) wear a sterile mask, hat, gown, and gloves, and (5) put a sterile dressing over the catheter site once the line is in. Check, check, check, check, check. These steps are no-brainers; they have been known and taught for years. So it seemed silly to make a checklist just for them. Still, Pronovost asked the nurses in his I.C.U. to observe the doctors for a month as they put lines into patients, and record how often they completed each step. In more than a third of patients, they skipped at least one.
 The next month, he and his team persuaded the hospital administration to authorize nurses to stop doctors if they saw them skipping a step on the checklist; nurses were also to ask them each day whether any lines ought to be removed, so as not to leave them in longer than necessary. This was revolutionary. Nurses have always had their ways of nudging a doctor into doing the right thing, ranging from the gentle reminder (“Um, did you forget to put on your mask, doctor?”) to more forceful methods (I’ve had a nurse bodycheck me when she thought I hadn’t put enough drapes on a patient). But many nurses aren’t sure whether this is their place, or whether a given step is worth a confrontation. (Does it really matter whether a patient’s legs are draped for a line going into the chest?) The new rule made it clear: if doctors didn’t follow every step on the checklist, the nurses would have backup from the administration to intervene. 
Pronovost and his colleagues monitored what happened for a year afterward. The results were so dramatic that they weren’t sure whether to believe them: the ten-day line-infection rate went from eleven per cent to zero. So they followed patients for fifteen more months. Only two line infections occurred during the entire period. They calculated that, in this one hospital, the checklist had prevented forty-three infections and eight deaths, and saved two million dollars in costs. …. 
The checklists provided two main benefits, Pronovost observed. First, they helped with memory recall, especially with mundane matters that are easily overlooked in patients undergoing more drastic events. (When you’re worrying about what treatment to give a woman who won’t stop seizing, it’s hard to remember to make sure that the head of her bed is in the right position.) A second effect was to make explicit the minimum, expected steps in complex processes. Pronovost was surprised to discover how often even experienced personnel failed to grasp the importance of certain precautions. ….

           Natural Resistance to Using Checklists 

After the checklist results, the idea Pronovost truly believed in was that checklists could save enormous numbers of lives. He took his findings on the road, showing his checklists to doctors, nurses, insurers, employers—anyone who would listen. He spoke in an average of seven cities a month while continuing to work full time in Johns Hopkins’s I.C.U.s. But this time he found few takers.
There were various reasons. Some physicians were offended by the suggestion that they needed checklists. Others had legitimate doubts about Pronovost’s evidence. So far, he’d shown only that checklists worked in one hospital, Johns Hopkins, where the I.C.U.s have money, plenty of staff, and Peter Pronovost walking the hallways to make sure that the checklists are being used properly. How about in the real world—where I.C.U. nurses and doctors are in short supply, pressed for time, overwhelmed with patients, and hardly receptive to the idea of filling out yet another piece of paper?
…. “Forget the paperwork. Take care of the patient.” ….
The doctors and nurses on rounds tried to proceed methodically from one room to the next but were constantly interrupted: a patient they thought they’d stabilized began hemorrhaging again; another who had been taken off the ventilator developed trouble breathing and had to be put back on the machine. It was hard to imagine that they could get their heads far enough above the daily tide of disasters to worry about the minutiae on some checklist.

          Changing Cultures  

Yet there they were, I discovered, filling out those pages. Mostly, it was the nurses who kept things in order. Each morning, a senior nurse walked through the unit, clipboard in hand, making sure that every patient on a ventilator had the bed propped at the right angle, and had been given the right medicines and the right tests. Whenever doctors put in a central line, a nurse made sure that the central-line checklist had been filled out and placed in the patient’s chart. Looking back through their files, I found that they had been doing this faithfully for more than three years. 
Pronovost had been canny when he started. In his first conversations with hospital administrators, he didn’t order them to use the checklists. Instead, he asked them simply to gather data on their own infection rates. In early 2004, they found, the infection rates for I.C.U. patients in Michigan hospitals were higher than the national average, and in some hospitals dramatically so. Sinai-Grace experienced more line infections than seventy-five per cent of American hospitals. Meanwhile, Blue Cross Blue Shield of Michigan agreed to give hospitals small bonus payments for participating in Pronovost’s program. A checklist suddenly seemed an easy and logical thing to try.
 In what became known as the Keystone Initiative, each hospital assigned a project manager to roll out the checklists and participate in a twice-monthly conference call with Pronovost for trouble-shooting. Pronovost also insisted that each participating hospital assign to each unit a senior hospital executive, who would visit the unit at least once a month, hear people’s complaints, and help them solve problems.
The executives were reluctant. They normally lived in meetings worrying about strategy and budgets. They weren’t used to venturing into patient territory and didn’t feel that they belonged there. In some places, they encountered hostility. But their involvement proved crucial. In the first month, according to Christine Goeschel, at the time the Keystone Initiative’s director, the executives discovered that the chlorhexidine soap, shown to reduce line infections, was available in fewer than a third of the I.C.U.s. This was a problem only an executive could solve. Within weeks, every I.C.U. in Michigan had a supply of the soap. Teams also complained to the hospital officials that the checklist required that patients be fully covered with a sterile drape when lines were being put in, but full-size barrier drapes were often unavailable. So the officials made sure that the drapes were stocked. Then they persuaded Arrow International, one of the largest manufacturers of central lines, to produce a new central-line kit that had both the drape and chlorhexidine in it. 
In December, 2006, the Keystone Initiative published its findings in a landmark article in The New England Journal of Medicine. Within the first three months of the project, the infection rate in Michigan’s I.C.U.s decreased by sixty-six per cent. The typical I.C.U.—including the ones at Sinai-Grace Hospital—cut its quarterly infection rate to zero. Michigan’s infection rates fell so low that its average I.C.U. outperformed ninety per cent of I.C.U.s nationwide. In the Keystone Initiative’s first eighteen months, the hospitals saved an estimated hundred and seventy-five million dollars in costs and more than fifteen hundred lives. The successes have been sustained for almost four years—all because of a stupid little checklist. …..

          Gawande Concludes 

We have the means to make some of the most complex and dangerous work we do—in surgery, emergency care, and I.C.U. medicine—more effective than we ever thought possible. But the prospect pushes against the traditional culture of medicine, with its central belief that in situations of high risk and complexity what you want is a kind of expert audacity—the right stuff, again. Checklists and standard operating procedures feel like exactly the opposite, and that’s what rankles many people.

Does This Apply to Construction?


It was clear to me on my recent construction defects case that the project would have benefited from a check list procedure, rigorously implemented.  Construction is too complex for architects to fully show and think through all details during the preconstruction design stage.  The steps are too complex and numerous to expect union hall workers to reliably carry them out faithfully just because they've done it lots of times before in similar applications.  Is the design correct?  Is the design being followed?  Are the correct materials being used? Are they being correctly installed.  Will the work stand the test of time?  If the architect, contractor, trade contractors, and consultants jointly develop a checklist, and hold each other responsible for implementing it, there is every reason to think that the same dramatic improvements can be achieved as in medicine, or flying a complicated airplane.  

No comments:

Post a Comment